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Optimal energy density piezoelectric bending actuators
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Abstract

The design and analysis of piezoelectric actuators is rarely optimized for low mass applications. However, emerging technologies such
as micro air vehicles, and microrobotics in general, demand high force, high displacement, low mass actuators. Utilization of generic
piezoceramics and high performance composite materials coupled with intelligent use of geometry and novel driving techniques yields low
cost, rapidly prototyped, ultra-high energy density bending actuators for use in such applications. The design is based upon a laminate
plate theory model for a stacked multimorph cantilever actuator, encompassing all possible layups, layer anisotropies, internal and external
excitations, and intrinsic and extrinsic geometries. Using these principles, we have fabricated 12 mg PZT bimorph actuators with greater than
2 −1 ly available
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J kg energy density. This gives a performance increase of an order of magnitude or greater compared to existing commercial
iezoelectric bending actuators.
2004 Elsevier B.V. All rights reserved.
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. Introduction

This work addresses a number of key points in actuator de-
ign, specifically for high energy density applications, which
re unique among the design of transducers. The overall goal
f this paper is to describe methods for creating bending ac-

uators which result in each infinitesimal electro-active ele-
ent having a strain close to its ultimate strain for a given

et of known internal and external excitations. In total, three
oupled techniques are described here for increasing the en-
rgy density of clamped-free piezoelectric bending actua-

ors: geometry, smart material choices, and optimal high field
riving techniques. Each individually gives an improvement
ver existing competitors, however when coupled together
he result is a factor of 10 or greater energy density im-
rovement. As a verification of the model and fabrication
rocess, this work develops and tests a millimeter-scale bi-
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morph actuator and compares the results to existing be
actuators.

One novelty of the approaches presented here is the
eling of the actuator performance, both of the actuator ou
and of the interactions between internal and external ex
tions. There have been numerous models presented f
mechanics of rectangular piezoelectric transducers. D
and Pisano[4] presented a model for MEMs cantilever ac
ators considering multiple passive layers. Smits and Ba
[13], Smits and Choi[14] and Weinberg[18] described in
detail a one-dimensional analysis of piezoelectric ben
actuator performance using energy methods. More sp
to this work, Wang and Cross[16] modeled a bimorph wit
a central passive layer and the effects thereof. For m
robotics applications, Sitti et al.[12] described the desig
of millimeter scale bending actuators. For greater gen
ity, laminate plate theory is used in this work to desc
the interaction between the external and internal forces
moments with the layer stresses and strains. This not
predicts the displacement and blocked force of the a
ator, but additionally the strains in each layer for fail
analysis as well. Although the discussion in this pape
924-4247/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.sna.2004.10.024
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Fig. 1. Bimorph drawing with pertinent dimension descriptions.

concentrated on piezoelectric actuation, this model is easily
adapted to thermally excited and other electro-active actu-
ators as well. The use of actively or passively (elastically)
anisotropic constituent layers can also yield interesting tai-
lored kinematics (bending-twisting and extension-twisting
coupling for example) and is also encompassed within this
model.

There are a number of existing and conceptual applica-
tions for such a technology, for example as the flight mus-
cles for a flapping wing micro air vehicle[21], control sur-
face actuators for indoor slow fliers[6,9], motors for mi-
cro legged robots[5], drivers for haptic display devices
[11], etc.

1.1. Design preliminaries

Fig. 1shows a drawing of the proposed bimorph actuator
for design purposes. Note that the width is tapered along the
length; the actuator geometry will be discussed inSection 2.1.
Also, the elastic (passive) material is drawn as one layer. In
reality, however, it could be composed of a number of layers
in arbitrary orientations as will be discussed inSection 2. The
effects of an extension will be described inSection 2.2. For
performance comparisons, the mechanical energy is defined

as the area under the force–displacement curve:

Um = 1
2Fbδmax (1)

whereFb andδmax are the peak-to-peak blocked force and
unloaded maximum tip displacement respectively for a given
field. This paper assumes that the actuators are driven quasi-
static (f � f0), thus the power is a linear function of the
drive frequency. However for such actuators driving resonant
systems ([2,20,21]) the power able to be delivered to a given
load is a function of internal dissipations. The dissipation
effects on the power delivery capabilities for resonant systems
are quantified in Eq.(2).

P =
{

1
82πf0FbδQl for Qa � Ql
1
162πf0FbδQ for Qa ≈ Ql

(2)

In Eq. (2) f0 is the total system resonant frequency and the
mechanicalQ is a function of the lumped system stiffness,
mass, and loss:Q = √

km/b. This paper does not address
actuator and load dynamics and losses and thus the energy
density will be the performance merit for the remainder of
this discussion.

Table 1lists the specifications of current commercially
available actuators. Note that the magnitudes of the applied
fields inTable 1for the first two actuators are small compared

T
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t.html)
empir
able 1
ommercially available clamped-free cantilever piezoelectric bending

Actuator δmax
a(�m) Fb

a(mN) m (

T219-H4CL-103Xd 610 160 3
QP21Be 790 460 28
TH-8Rf 1900 111 17
Optimized bimorphg 520 123
Maximum strain energy density for bulk free plateh

a Peak-to-peak.
b Maximum drive field.
c Either PZT-5H or PZT-5A.
d Piezo Systems (http://www.piezo.com).
e Mide QuickPack actuators (http://www.mide.com/quickpack/qppricelis
f THin layer UNimorph DrivER and sensor from Face Thunder (from
g Strain-optimized bimorph micro-actuators described in this work.
h Ford31 actuation.
tor specifications

DU (J kg−1) Fieldb(V�m−1) Piezo materiac

0.153 0.25 5H
0.065 0.50 5A
0.059 1.75 5H
2.730 2.36 5H

4.0 2.5 5H

.
ical measurements andhttp://www.face-int.com/thunder/thunder.htm).

http://www.piezo.com
http://www.mide.com/quickpack/qp_pricelist.html
http://www.face-int.com/thunder/thunder.htm
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to the field applied to the bimorphs in question (>2 V�m−1

as will be discussed inSection 4). There are four key factors
that can limit the magnitude of field applied to piezoelec-
tric actuators: mechanical failure (fracture), electrical failure
(dielectric breakdown), depolarization, or saturation of the
piezoelectric effect. Bimorphs connected in series or paral-
lel to the drive source are limited by depolarization (as is
the case with the first two actuators inTable 1). Unimorphs
are not subject to depoling so long as the field is unipolar
in the poling direction, or a small magnitude bipolar field.
The THUNDER actuators inTable 1are unimorphs and the
field limit listed is based upon commercial specifications.
The actuators described here are limited by breakdown and
mechanical failure; little saturation has been observed be-
fore either electrical or mechanical failure. It is important to
note that it is not only the driving method that allows these
actuators to be driven at such high fields. The intrinsic and ex-
trinsic geometry modifications give the capability to run the
actuator at fields which would fracture traditional rectangu-
lar bimorphs. All peak field data for commercially available
actuators shown inTable 1are directly quoted from the man-
ufacturer.

2. Laminate plate theory for the design of multilayer
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Fig. 2. Actuator layup for arbitrary lamina materials and ply angles.

given by the following:

ε1 = 1

E
σ1 + d31E3p + α1�T (4)

whereσ is an applied stress,E3 the electric field,α the co-
efficient of thermal expansion (CTE), and�T the change in
temperature, which for this application is the change from
the cure temperature to room temperature (curing details are
given inSection 3). Thep term in(4) is a placeholder which
is defined as follows:

p =




1 field parallel to piezoelectric poling

−1 field antiparallel to piezoelectric poling

0 else

(5)

Thus, this model can be applied to any combination of piezo-
electric and passive plates. Note that for the case of an
anisotropic composite material, the strains in(4) are along
the fiber direction, as is defined inFig. 3. More generally, the
in-plain strains assume the following form:


ε1

ε2

γ12




n

=




S11 S12 0

S12 S22 0

0 0 S66




n




σ1

σ2

τ12




n
d31

 
α1


T
( :


in
m

ending actuators

Throughout the following discussion a number of assu
ions are made. First, the piezoelectric materials are ass
o be transversely isotropic, that isd31 = d32 and there ar
o piezoelectrically induced shearing forces,d36 = 0 [7]. In
eneral this is only true for the case of polycrystalline pie
lectric materials; with single crystal materials the piezoe

ric constant will vary with the orientation relative to the cr
al directions. However, if the crystal is cut properly so tha
rystal planes are aligned to the actuator geometry, the
aterial is piezoelectrically orthotropic and this assump
olds for the single crystal case as well. Second, there is n

ernal axial loading, only transverse loading which is app
t the distal end of the actuator. Third, the bonding betw
ach layer is assumed to be perfect, that is, there are no
trains between layers. Fourthly, for thermal calculati
here is no gradient in temperature through the thickne
ny lamina. Also, electrostriction and higher order effects

gnored. The change in effective field due to electromech
al coupling (as in[15]) is also ignored. Finally, when the a
uator width is much greater than the thickness, a plane s
tate is incurred whereεy ≡ 0 [18]. This causes the Young
odulus and piezoelectric properties to be modified

ollows:

i → Ei(1 − ν2
i )−1, d31 → d31(1 + νi) (3)

ig. 2shows the cross-section of a laminate consisting o
rbitrary lamina layup. This will be used to define the lam
eometry throughout this section. The strain in any lay
r +d32

0


n

En
3 + α2

0


n

�T (6)

he [Sij]n terms are the compliances of thenth layer. Solving
6) for the stresses in the piezo layer yields the following

σ1

σ2

τ12




n

=


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Q11 Q12 0

Q12 Q22 0

0 0 Q66




n






ε1

ε2

γ12




n

−




d31

d32

0




n

En
3 −




α1

α2

0




n

�T


 (7)

In Eqs.(6) and (7), the [Qij]n terms are the plane stra
odified material constants of the lamina as given inTable 2.
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Fig. 3. Lamina axes diagram for (a) plate aligned to global axes and (b) arbitrary orientation.

To generalize this to arbitrary lamina orientations, the follow-
ing notation is used:


σx

σy

τxy




n

=




Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66




n






εx

εy

γxy




n

−




d31

d32

0




n

En
3 −




ᾱx

ᾱy

ᾱxy




n

�T


 (8)

Where the new [̄Qij]n is the adjusted stiffness matrix whose
elements have the following properties:

[Q̄ij] = [T ]−1[Qij][T ]−T (9)

and the transformed CTE terms [ᾱi] are as follows:

[ᾱ] = [T ]−1[α] (10)

where the transformation matrix [T] is defined in(11).

[T ] =




m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2


 (11)

In (11), the termsmandn are cos(θ) and sin(θ) respectively
w mina
fi ts
( s:

[

Next, the actuator properties are determined as a function
of the ply layup using laminate plate theory. First, the rela-
tionship between the midplane strains and curvatures and the
forces and moments is given by:[
N

M

]
=
[
Aij Bij

Bij Dij

][
ε0

κ

]
(13)

In Eq.(13) theA, B, andD terms are given as follows:

Aij =
∑
n

[Q̄ij]n(zn − zn−1),

Bij = 1

2

∑
n

[Q̄ij]n(z2
n − z2

n−1),

Dij = 1

3

∑
n

[Q̄ij]n(z3
n − z3

n−1) (14)

In Eq.(14), the termzn is the directed height of thenth lamina
with respect to the mid plane as is shown inFig. 2. In Eq.(13),
the total forces and moments per unit width [N M ]T can be
split up into three terms: the externally applied moments and
the internal forces and moments from the piezoelectric effect
and thermal expansion all per unit width.[
N
] [

Next

] [
Np

] [
Nt
]

T lows:

[

T
D

l

0

hereθ is the angle between the global axes and the la
ber direction (seeFig. 3(b)). Now the forces and momen
per unit width) are given as a function of the ply stresse

[Ni] =
∑
n

∫ zn

zn−1

[σi]n dz,

Mi] =
∑
n

∫ zn

zn−1

[σi]nzdz (12)

able 2
esign parameters for actuator materials

Parameters UHM CFa S2Glassa Stee

E1 350 60 193
E2 7 7 193
ρ 1500 1600 780
d31 – – –
σu,1

b 840 1400 900c

a Cured.
b Ultimate stress.
c Yield stress.
d Estimated from empirical observations.
M
=

Mext
+

Mp
+

Mt
(15)

he piezoelectric forces and moments are defined as fol

[Ni(E3)]p =
∑
n

∫ zn

zn−1

[Q̄ij]nd3jE3 pdz,

Mi(E3)]p =
∑
n

∫ zn

zn−1

[Q̄ij]nd3jE3z pdz (16)

Si PZT-5H PZN-PT Units

190 62 15 GPa
190 62 15 GPa
2300 7800 8300 kg m−3

– −320 −950 pmV−1

120 200d 40d MPa
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Similarly, the thermal expansion forces and moments are:

[Ni]
t =

∑
n

∫ zn

zn−1

[Q̄ij]n[ᾱj]n�T dz,

[Mi]
t =

∑
n

∫ zn

zn−1

[Q̄ij]n[ᾱj]n�Tzdz (17)

Solving Eq. (13) for the midplane strains and curvatures
yields the following:

[
ε0

κ

]
=
[
Aij Bij

Bij Dij

]−1([
Next

Mext

]
+
[
Np

Mp

]
+
[
Nt

Mt

])

(18)

Finally, the free displacement and blocked force of the ac-
tuator are found as a function of the applied fields ([E3]n)
and the external loading. Since axial strains do not con-
tribute to lateral displacement of the distal end of the
cantilever, the only quantity of interest from Eq.(18) is
κx. First note that the curvatureκx is related to the dis-
placement as d2δ(x)/dx2 = κx whereδ(x) is the displace-
ment of the actuator at any point along thex-axis and
define:[ ]−1

into
no
e
,

rnal
mal

ex-

2.1. Actuator geometry

For the case of transverse external loading, significant
tensile stresses will be developed in the outer layers. For
the case of a clamped-free cantilever, the moment per unit
width generated in the beam isMx(x) = −F (l − x)/w. For
a constant cross-section, this moment is proportional to the
stress at a given pointx, thus the stresses will be max-
imum at the proximal end of the actuator. If the cross-
section varies alongx, the stress profile can be controlled
and large stresses can be eliminated. Varying the thickness
of the piezoelectric material is not practical given the thick-
ness of the commercially available PZT plates used (127�m);
however, controlling the width is relatively simple. To ex-
plore this further, consider Eq.(21) and expand the external
moment.

d2δ(x)

dx2
= P(E3) − C44F (l − x)

w(x)
(22)

Thus the free deflection (withF ≡ 0) does not vary with a
change in the width profile. Next it is necessary to deter-
mine w(x) explicitly for each profile for use in Eq.(22).
For the case of a trapezoidal profile, this is given by the
following:

w

( )

F
a les
( t for
c
E
w ely.
I m,
p end
i is
p the
l in
F er
p ll be
s can
i ature
i

C = Aij Bij

Bij Dij

(19)

Next the external forces and moments are included
Eq. (18). Note that for a clamped-free cantilever with
external axial forces and an external moment about thy-
axis, [Next Mext ]T = [ 0 0 0Mx(x) 0 0]T. For convenience
define the following:

P(E3) = C41N
p
x (E3) + C42N

p
y (E3) + C44M

p
x (E3)

+C45M
p
y (E3) (20)

whereCij is the (i, j)th element ofC (i, j ∈ {1 : 6}). Thus
it can be seen that the curvature is related to the inte
and external moments as follows (ignoring the static ther
forces and moments):

d2δ(x)

dx2
= P(E3) + C44Mx(x) (21)

A functional diagram of the actuator with respect to the
ternal parameters in Eq.(21) is shown inFig. 4.

Fig. 4. Actuator diagram with respect to external parameters.
(x) = wnom
2(1− wr)

l
x + wr (23)

or the above equation,wnom is the nominal width (the width
tx = l/2) which is the same for all trapezoidal width profi
to keep the platform area and thus the mass constan
ollateral comparisons) and the width ratio,wr = w0/wnom.
xample width profiles are shown inFig. 5. In Fig. 5w0 and
l are the width at the proximal and distal ends respectiv

t is trivial to see that for a thin long clamped-free bea
oint loaded at the distal end, the strain at the proximal

s inversely proportional to the width ratio. To illustrate th
oint more concisely the normalized strain profile along

ength of the actuator is plotted for a few width ratios
ig. 6(a). Thus it is clear that altering the width can low
eak stresses, increasing the load to fracture; now it wi
hown that for a fixed actuator area, varying the width

ncrease or decrease the blocked force. Again the curv
s given by:

d2δ(x)

dx2
= P(E3) − C44F

wnom

[
l − x

(2(1− wr)/l)x + wr

]
(24)

Fig. 5. Three representative width profiles.
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Fig. 6. Strain profiles for a few width ratios (a) and width factor as a function of width ratio (b) with experimental data (N = 3) for two geometries.

Integrating this twice noting the strict boundary conditions
yields the displacement at the distal end of the actuator:

δ(l) = P(E3)l2

2
− C44Fl

3

wnom

×
[

(wr − 2)2 ln ((2 − wr) /wr) − 6 + 10wr − 4w2
r

8(1− wr)3

]
(25)

Now whenδ(l) = 0, the blocked force,Fb, is defined as:

Fb = 3P(E3)wnom

2C44l
W(wr) (26)

whereW is the width factor is given by the following:

W(wr) =
8(1− wr)3

3(wr − 2)2 ln((2 − wr)/wr) − 18+ 30wr − 12w2
r

(27)

The width factor is plotted inFig. 6(b), showing the variation
with the width ratio. Note that forwr = 1, W = 1, yield-
ing the same blocked force prediction as for the rectangular
case. Substituting the blocked force and free displacement
into Eq.(1) will yield the mechanical energy:

U
3P(E3)2wnoml

N tor,
a atest
e ratio
o

2

an-
t istal
e am-
p as
a and
m nsion
a nd

moment as seen by the active material, the strain is more
uniformly distributed along the length. Because of this, large
differences in stress between different sections are decreased
and each infinitesimal section of the piezoelectric material
can be driven closer to the fracture strain. Thus the extension
does not add mechanical energy to the system, but instead
allows all parts of the actuator to contribute more uniformly
to the work. To examine the effects of the extension, first
the external moment term,Mx(x) from Eq.(21) needs to be
determined.[

F

Mext

]
=
[

1

−lext

]
Fext (29)

Now it is clear that there will be a superposition of a pure
moment and a force generated by the point load. Thus the
moment per unit width is given by the following:

Mx(x) = −Fext((l + lext) − x)

wnom
(30)

where nowFext = F applied at the tip of the extension. Note
that in the above equation, the width is set to be constant
and equal townom. Next, the curvature in Eq.(21) is split
into two terms, one from the internal piezoelectric moment
(d2δp(x)/dx2) and one from the externally applied moment
(d2δf (x)/dx2). At x = l, the displacement at the interface

wice
m =
8C44

W(wr) (28)

ote that the termwnoml represents the area of the actua
nd that the energy is linear with the area. Thus the gre
nergy and energy densities are obtained from a width
f 2, which represents a triangular actuator.

.2. Rigid extension

Another method of improving the energy density of a c
ilever bending actuator is to add an extension to the d
nd. The concept of a rigid extension was introduced by C
olo et al.[3] and is shown inFig. 7. This extension acts
lever which converts the force on the tip to a force
oment at the interface between the piezo and the exte
s in Eq.(29). By transforming the point load to a force a
between the piezo and extension is found by integrating t
these two curvatures:

δp(l) = P(E3)l2

2
(31)

Fig. 7. Exploded image of actuator with extension.



482 R.J. Wood et al. / Sensors and Actuators A 119 (2005) 476–488

Fig. 8. Energy improvement as a function of the extension ratio.

δf (l) = −C44Fext

wnom

(
l3

3
+ lextl

2

2

)
(32)

Next note that the displacement at the distal end of the ex-
tension is a function of the displacement at the interface, the
slope at the interface, and the extension length.

δ(l + lext) = δ(l) + dδ(x)

dx

∣∣∣∣
x=l

lext (33)

Adjusting the displacement terms in(31) and (32)for the
extension and simplifying by introducing the length ratio,
lr, defined as the ratio of the extension length to the actua-
tor length (without the extension), yields two displacement
terms:

δp(l + lext) = Pl2

2
(1 + 2lr) (34)

δf (l + lext) = −C44Fextl
3

3wnom
(1 + 3lr + 3l2r ) (35)

To solve for the blocked force at the extension, the su-
perposition of the two displacements must be zero, i.e.
δp(l + lext) + δp(l + lext) = 0. Using this and solving forFext

yields the blocked force as follows:

Fb,ext = 3P(E3)wnom

2C44l

(1 + 2lr)

(1 + 3lr + 3l2r )
(36)

Note that this is done without regard to the width profile, and
setting the width townom. Now the energy of the actuator with
the extension is given as follows by substituting the terms in
(36)and the free displacement from(34) into (1):

Um,ext = 3P(E3)2lwnom

8C44
L(lr) (37)

The termL in the above equation is a unitless function of the
extension ratio:

L(lr) = (1 + 2lr)2

(1 + 3lr + 3l2r )
(38)

Finally, assume that the extension adds negligible mass to the
actuator, and thus the energy and energy density are propor-
tional toL. The functionL is plotted inFig. 8 as a function
of the extension ratiolr.

Note that if lr = 0, Eq. (37) reduces to the same en-
ergy as for the rectangular case with no extension. To de-
termine the maximum improvement in energy, observe that
lim lr→∞ L = 4/3. Thus the maximum improvement in en-
ergy and energy density is 4/3. Note that for all the equations
i gid,
o -
a

2

t This
i rva-
t the
e

M

T t of
S ctric

metry:
Fig. 9. Energy improvement as a function of the geo
n Section 2.2, the extension is assumed to be perfectly ri
r more practically to have a stiffness >10× that of the actu
tor without the extension (Figs. 9 and 10).

.3. Complete model

Combining the results fromSections 2.1 and 2.2yields
he complete description of the actuator performance.
s done by again performing the integrations on the cu
ure, but now combining the width and extension terms in
xternal moment.

x(x) = − Fext(l(1 + lr) − x)

wnom((2(1− wr)/l)x + wr)
(39)

he remainder of the procedure is identical to tha
ection 2.2. First, the displacement due to the applied ele

(a) 3D plot ofGU and (b) contour plot of the same function.
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Fig. 10. Predicted effect of passive layer thickness on energy density for a
bimorph.

field is found, along with the displacement due to an exter-
nal force. These are then added and set to zero to find the
blocked force. Note that the free displacement is identical to
the results inSection 2.2. First, integrating twice to find the
displacement from an external force yields the following:

δf (l) = −C44Fextl
3

3wnom
Gl(wr, lr) (40)

The termGl is a function of the width ratio and extension ratio
Gl(wr, lr) = (ga + gb)/gc where thegi terms are defined as
follows:

ga = 6(wr − 1)(−3 − 2lr + 2wr + 2lrwr),

gb = 3(wr − 2)(−2 − 2lr + wr + 2lrwr) ln

(
2 − wr

wr

)
,

gc = 8(1− wr)
3 (41)

Recall again Eq.(33) for a rigid extension and substitute this
into (40)yielding the following:

δf (l + lext) = −C44Fextl
3

3wnom
Glext(wr, lr) (42)

where the parameterGlext(wr, lr) = (gd + ge)/gc and thegi
terms are defined as follows:

g = 6(w − 1)(3+ 4l − 2w − 4l w ),

N s
t

F

w try
c

G

For convenience, call the term (1+ 2lr) in (35)Gδ, the free
displacement geometry constant. Lastly, callGU the prod-
uct GδGFb; thus the mechanical energy can be written as a
function ofGU :

Um = 3P(E3)2lwnom

8C44
GU (wr, lr) (46)

ThusGU multiplies with the energy and also the energy den-
sity, thereforeGU is a relative measure of the geometrically
improved energy density. Finally, the energy density is given
as:

DU = 3P(E3)2/8C44∑
n ρntn

GU (wr, lr) (47)

whereρn andtn are the densities and thicknesses of thenth
layer respectively. TheGU parameter is plotted below as a
function of the width and extension ratios. This completes the
model for cantilever piezoelectric bending actuators includ-
ing any number, anisotropy, or orientation of the constituent
layers, number, placement, or makeup of piezoelectric layers,
and overall geometry.

3. Fabrication

From the design analysis, ultra-high modulus (UHM) uni-
d pas-
s tes
h
e no
a ac-
t sed
t cerns
f lass
l ficant
c ional
S er is
l puter
c ave
R gles.
T s ini-
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s ven.
T w of
t ator
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p rs in
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r stal
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c sible.
T the
d r r r r r

ge = 3(−2 − 2lr + wr + 2lrwr)
2 ln

(
2 − wr

wr

)
(43)

ow adding Eqs.(35) and (42)and setting this to zero yield
he blocked force:

b,ext = 3P(E3)wnom

2C44l
GFb(wr, lr) (44)

here the termGFb is called the blocked force geome
onstant and is defined as follows:

Fb(wr, lr) = (1 + 2lr)

Glext(wr, lr)
(45)
irectional carbon fiber composites are chosen for the
ive layers, similar to[24]. Carbon fiber-based composi
ave the added benefit of being decent (≈ 1 × 10−3 5 cm)
lectrical conductors (for low current applications), thus
dditional electrodes need to be implanted within the

uator layup. Ideally, such UHM materials would be u
o create the rigid extension. However, because of con
or shorting the piezo electrodes, non-conductive fiber g
ayers are used. Since extension compliance is a signi
oncern the highest modulus glass material, unidirect
2Glass, is layered to stiffen the extension. Each lay

aser-micromachined into desired shapes using a com
ontrolled precision pulsed laser (QuickLaze from New W
esearch Inc.) to control dimensions and relative ply an
he composite material matrices are thermoset polymer

ially in a catalyzed uncured state (called prepreg) and
ut in this state. After all materials are cut, the layers ar
embled with the desired layup and cured in a vacuum o
he bonding between each layer is achieved by the flo

he composite matrix epoxy while curing. Thus, the actu
equires neither electrodes nor additional bonding layer

To determine the geometric parameters for the desire
lication, the effects of the various constituent paramete
ection 2.3on the output performance is determined. F

he width ratio and the length ratio are maximized to
ighest practical degree. For practical applications, the w
atio will not reach the maximum value of 2 since a di
nd with zero width results in too fragile a structure, and
onnection to the extension needs to be as rigid as pos
he length ratio cannot be increased indefinitely since
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extension mass becomes a concern. The current design uses
a width ratio of 1.5 and an extension ratio of 1.

In choosing the geometry of the actuator, three output pa-
rameters are used: the displacement, the blocked force, and
the energy density. From the results inSection 2.3, the fol-
lowing is clear:

DU = g1(tr), δ = g2(tr, l),

Fb = g3(tr, l, wnom) (48)

wherel andwnom are again the actuator length and nominal
width respectively andtr the ratio of the passive layer thick-
ness to a single piezoelectric plate thickness. First, for given
constituent layer mechanical and piezoelectric properties, the
energy density is maximized over the passive layer thickness.
From this plot it can be seen that the maximum energy density
occurs at a thickness ratio of approximately 0.35 for the bi-
morph with respect to the given material properties and using
unidirectional UHM composites. Note that the UHM energy
density is plotted alongside similar curves for other common
engineering materials for comparison reasons. Now the re-
maining two parameters, the displacement and blocked force,
have two unknowns, the length and the nominal width. Solv-
ing these two equations for application specific displacement
and blocked force yields the length and width parameters.
T nsid-
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3.2. Utilizing thermal expansion mismatches

Before curing, the materials in the actuator are free, and
when brought up to high temperatures for curing, they freely
expand or contract depending upon the sign of their CTE. The
state before any significant cross linking of the matrix epoxy
occurs is referred to as the stress free state. Once bonding oc-
curs, the materials are joined at the interface. By designing the
elastic layer to have a proper CTE with respect to the piezo-
electric layer, a tailored stress is applied to the piezoelectric
material after the actuator is subsequently brought down to
room temperature. Quantitatively, the thermal stresses de-
veloped in each layer of the laminate can be determined by
examining Eq.(18). By solving(18) for the midplane strains
and curvatures and noting that the strain in theith layer is re-
lated to these two terms via Eq.(50), the stresses and strains
can be predicted on a ply by ply basis.

εi = ε0 + κzi (50)

Section 4.1provides a diagram of the strains in the various
layers of the bimorph actuator.

4. Driving techniques

ing
first
cted
bi-

n
s the
layer
ates
par-
ile a
sim-
site
ains.

that
ob-
he properties of the various engineering materials co
red for the passive and active layers are given inTable 2.

.1. Piezoelectric material choice

One of the best criterion for choice of piezoelectric m
ial is the strain energy density. The strain energy dens
efined as follows:

max = 1

ρ

(
1

2
Eε2

max

)
(49)

hereemax is the maximum strain energy density,ρ the den
ity, E the Young’s modulus, andεmax the maximum strain
his last term,εmax, can be thought of as derived from one

wo different elastic modes: either the strain developed
xternal loading, or the induced piezoelectric strain at a g
eld, namelydijEi. Two piezoelectric materials are cons
red: PZT-5H, a soft polycrystalline ceramic, and PZN
ferroelectric relaxor-based single crystal[10,23]. The for-
er has the benefits of low cost, ease of availability,

elatively high elastic modulus while the latter has a m
arger piezoelectric coupling coefficient with the drawba
f cost, availability, and poor fracture properties. The p
rties of both materials are given inTable 2. To determine
hich strain to use in(49), choose min(d31E3, εf ), where
f is the mechanical fracture strain. Thus, because of th
remely low fracture toughness associated with single cr
aterials, PZT shows a factor of two better performa
herefore, polycrystalline piezoelectric materials are u

hroughout the following discussion.
There are a number of traditional methods for apply
a field to bimorph piezoelectric bending actuators. The
two methods require only a single source which is conne
electrically in parallel or series with the electrodes of the
morph as described by Wang et al.[17] and are shown i
Fig. 11(a). For the series case, the field is applied acros
two electrodes and the polarization of each piezoelectric
is opposite. Thus the application of the electric field cre
opposing strains in the two layers. For the case of the
allel configuration, the center electrode is grounded, wh
positive voltage is applied to the outer two electrodes of
ilarly poled piezoelectric layers. Thus, instead of oppo
polarizations, the field orientation creates opposite str
The major differences between these two methods are
the series configuration will require twice the voltage to

Fig. 11. Drive diagram for (a) single source and (b) dual source.
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tain the same field, while the parallel method requires one
additional connection. The overall problem with these two
methods lies in the limit of the field that could be applied be-
fore depoling occurs within the layer that is poled antiparallel
to the field direction. For PZT at room temperature, this is
approximately 0.5 V�m−1, however the desired field (which
will draw the constituent actuator materials close to fracture)
is approximately 2–3V�m−1 which would depole one of the
layers, making the actuator useless. This effect is amplified as
the operating temperature approaches the Curie temperature
or in the presence of applied mechanical stresses. It is clear
that in order to obtain the highest possible performance, each
piezoelectric layer must be kept under positive field with re-
spect to its polarization direction. Thus the achievable energy
density would be much too low for either of these techniques
(as can be seen inTable 1).

The dual source drive schematics are shown inFig. 11(b).
The first of these two is termed the alternating drive where
the dual source drive either layer independently. Each source
is kept 180◦ out of phase with the other, each driven unipolar.
This keeps each layer driven only in a positive sense, however
requires two independent sources for each actuator, and thus
a total of 2n + 1 wires and 2n sources forn actuators. The
second option, termed the simultaneous drive, instead biases
the entire actuator. Thus the bias and ground can be com-
mon for multiple actuators, requiringn + 2 wires andn + 1
s
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Fig. 12. Comparison of hysteresis plots for all three dual source driving
methods (drive voltage is with respect toVmax/2).

the load cell, and measuring the resulting force. This gives a
very linear curve for the blocked force as a function of field
as is shown inFig. 13(a). To quantify the hysteresis in the
applied force, the load cell was put in contact with the free
end of the actuator and the bimorph was driven fromVd = 0
to Vmax whereVmax = Vb for incrementally increased bias
fields. The results are shown inFig. 13(b). It is well un-
derstood that piezoelectric materials undergo a softening at
higher fields. This softening will be apparent when observing
theQ and resonant frequencies as a function of the applied
field. As an example of this effect, the frequency response of
an unloaded bimorph was determined for iteratively increased
field magnitudes. Since the actuator alone is a highQsystem,
this could not be tested up to the field magnitudes that will be
experienced when connected to a load. From the frequency
response seen inFig. 14(a), the resonant frequency andQcan
be extracted as a function of the field magnitude. Note that
the actuator is driven in simultaneous mode withVmax = Vb.
The results are shown inFig. 14(b). Finally, the performance
of the bimorph actuators described here are given inTable 3.
Note that inTable 3there are two known causes of the dif-
ference between the predicted and experimental performance
values. The first is due to stress basedd31 enhancements. It
is known that the piezoelectric coupling coefficients of poly-
crystalline piezoceramics is increased with applied tensile
stress and decreased with compressive stress[1,8,22]. For
t ectric
p sed
e l re-
a and
b iezo-
c d in
t
s de-
c will
n
a field
c nearly
i

ources forn actuators.

.1. Results

The mechanical energy provided by these two compe
rive methods was measured by individually measuring
isplacement and blocked force using custom built op

2] and strain[19] sensors respectively. First, each driv
ethod is evaluated based upon the static performance
o applied load. The results show that the alternating me
xhibits greater saturation, while providing approxima
% less displacement than the simultaneous drive for a
aximum field. Under cyclic actuation however, the sim

aneous drive shows slightly greater hysteresis. These
ifferences can be seen by a comparison of the output t

n Fig. 12. Since for the simultaneous case the relative ma
udes of the bias field and maximum drive field are varia
n attempt was made to compensate for this hysteres
rease by increasing the relative magnitude of the bias
he idea is that the added hysteresis originates from stre
olarization of the piezoelectric plate which is experienc
elatively less field magnitude during any given half stro
he field at this point is less than is required to maintain

arization while under high stresses. The results of this te
hown inFig. 12, display that this principle of reducing t
ysteresis does work, however the displacement amp
ecreases significantly. Next, the linearity and hysteres
locked force was examined using a custom built load

19]. This was done first by incrementally applying a field
bimorph, optically zeroing the actuator displacement
-

he case of the bimorphs described here, the piezoel
late performing work is always in tension (either impo
lastically from the opposite plate or from an externa
ction force) and will increase both peak displacement
locked force. The second cause for the discrepancy is p
eramic softening under high drive fields (as is displaye
he decrease in resonant frequency shown inFig. 14(a)). This
oftening will result in an increase in displacement and a
rease in blocked force. Corrections for these effects
ot be presented here, other than noting that alteringd31
nd the elastic modulus values as a function of applied
auses the predicted and measured performance to be
dentical.
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Fig. 13. Blocked force with the drive field (a) and force transducer measurements from bimorph showing hysteresis (b) both using the simultaneous drive
method (drive voltage is with respect toVmax).

Table 3
Performance results for energy density optimized bimorph piezoelectric
bending actuators (forN = 32 actuators, simultaneous drive, 2.4 V�m−1)

Parameter Units Predicted Measured Error (%)

δa µm 406 520± 56.9 +28.1
Fb

a mN 136 123± 20.5 −9.6
m mg 11.72 11.75± 0.8 +2.6
Um �J 28 32± 7.1 +14.3
DU J kg−1 2.35 2.73± 0.5 +16.2

a Peak-to-peak.

5. Discussion

At the beginning of this paper, the concept of high energy
density actuators was introduced as structures in which all
active materials are driven as close as possible to their maxi-
mum achievable strain (limited by either saturation, fracture,
breakdown, etc.). It is desirable at this point to estimate nu-
merically the strain present in each layer of the actuators due
to internal (thermal expansion, piezoelectric displacement)
and external (external loads) excitations typically expected
for the given application. This is readily accomplished by
calculating the midplane strains and curvatures when sub-
stituting the internal and external forces and moments into
Eq. (18) and then applying this to each layer via Eq.(50).
This ease of strain analysis is an ancillary benefit of us-

ing laminate plate theory for the design of bending actua-
tors and sensors. The thermal, piezoelectric, external, and
total strains (because of the principle of superposition) are
shown for the outer surface of the top piezoelectric layer
(because of symmetry) inFig. 15 for a bimorph as well
as for the passive layer for an externally applied 100 mN
load.

Note that inFig. 15the total strain is nearly constant along
the length of the actuator and close to the fracture strain of
the material, thus ensuring that each element of the piezo-
electric material is performing nearly maximal useful work.
In summary, there are four techniques described here to im-
prove the energy density of piezoelectric cantilever bending
actuators: width tapering, extension, high performance ma-
terial choice, and high field drive. While the geometric al-
terations contribute an increase of 33% (Fig. 9), the use of
composite materials yields between a maximum of 5–10%
improvement (depending upon material choice,Fig. 10) as
well as other ancillary benefits. Finally, the dual source si-
multaneous drive technique coupled with the strain unifor-
mity provided by the geometric modifications provide an
increase of approximately a factor of 10. In total, such ac-
tuators described here exhibit energy densities on the order
of 10–50 times those of commercially available adaptations
(Fig. 16).

ld mag
Fig. 14. Bimorph frequency response for varying fie
 nitudes (a) and the associated resonant frequency andQ (b).
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Fig. 15. Strains in the constituent layers of the bimorph actuator (simultaneous drive).

Fig. 16. Completed bimorph actuator.
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